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Phenomenological analysis of Phenomenological analysis of 
interfacial polarizationinterfacial polarization
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Different types of dipoles, same formalismDifferent types of dipoles, same formalism
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Response of dipoles to E fieldResponse of dipoles to E field
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Complex permittivityComplex permittivity
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Definition:

Debye dispersion 
function in complex form:



Debye dispersion functionDebye dispersion function
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A general dispersion function (GDF)A general dispersion function (GDF)
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V. Raicu, Phys. Rev. E 60 (1999) 4677-4680
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GDF includes both tissue and GDF includes both tissue and 
suspension responsessuspension responses
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MaxwellMaxwell--Wagner model of interfacial Wagner model of interfacial 
polarizationpolarization



Interfacial polarization (MaxwellInterfacial polarization (Maxwell--Wagner Wagner 
relaxation)relaxation)
To calculate the electric potential at an external 
point P, due to n particles of permittivity p,
one assumes that the particles in the large 
sphere are so far away from P, that they appear 
to be at the same distance, r, from P.

The result is found in standard electrodynamics 
textbooks (e.g., Jackson):
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Interfacial polarization (MaxwellInterfacial polarization (Maxwell--Wagner Wagner 
relaxation)relaxation)
The potential due to the large sphere, assumed 
to be homogeneous and of permittivity , is:
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An equation for permittivity is obtained assuming equality of the two potentials:
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This is known as the Maxwell-Wagner equation.

S. Takashima, Electrical properties of biopolymers and cell membranes, Adam Hilger, 1989
V. Raicu and A. Popescu, Integrated Molecular and Cellular Biophysics, Springer, 2008



Equivalent permittivity of suspensions Equivalent permittivity of suspensions 
of shelled spheresof shelled spheres
Miles and Robertson [Phys Rev (1932), 40: 583] 
calculated the potential outside shelled spheres 
suspended in a medium of permittivity e,

The potential due to a spherical suspension of such particles of equivalent is

The equation for permittivity, obtained from equality of the two potentials, is then

with

This equation is sometimes improperly attributed to Pauly and Schwan.
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Approximations to the single shell modelApproximations to the single shell model
For single-shelled particles, only one dispersion is usually important – the one due to 
the polarization at the interface between the suspending medium and cell 
membrane.

Pauly and Schwan have considered the very reasonable approximations,
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and 0=8.854  10-12 F/m is the permittivity of the free space.

S. Takashima, Electrical properties of biopolymers and cell membranes, Adam Hilger, 1989
V. Raicu and A. Popescu, Integrated Molecular and Cellular Biophysics, Springer, 2008



Multiple membranes: decomposition Multiple membranes: decomposition 
into subinto sub--dispersionsdispersions
 Daenzer H (Ergenbnisse der Biophysikalischen Forschung, ed E.B. 

Rajewsky, Leipzig: Georg Thieme, 1938, pp193-231), and later 
Pauly and Schwan (Z. Naturforsch. 14b, 1959, 125) have found that 
the complex permittivity expression for shelled spheres is exactly 
decomposable into two terms of a Debye type, corresponding to the 
two interfaces of the particles.

 Fricke (J. Phys. Chem., 59, 1955, 168) has generalized the model to 
include multi-shelled particles, and obtained an equivalent 
admittance if the form of a continued fraction.

 Irimajiri, Hanai, and Inouye (J. Theor. Biol., 78, 1979, 251-269) have 
succeeded in decomposing the dielectric function for multi-shelled 
particle suspensions into a sum of sub-dispersions whose total 
number equaled the number of cell interfaces.
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Effective Medium Theory (EMT)Effective Medium Theory (EMT)

 EMT takes into account contributions of other cells’ far-field to the local field
 Introduced by Brugemann and further developed by Hanai (see Takashima’s book)

Applied field, Eapplied
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EMT with DipoleEMT with Dipole--Dipole InteractionsDipole Interactions
(EMT(EMT--DDI)DDI)

 EMT-DDI takes into account contributions of cells to the local field
 Higher order multipoles should be also considered  This is very difficult !!

Applied field, Eapplied

+ -+ -

V. Raicu, T. Saibara, H. Enzan and A. Irimajiri, Bioelectrochem. Bioenerg., 47 (1998) 333-342

+ -



ApplicationsApplications



Standard twoStandard two--electrode systems forelectrode systems for
dielectric measurementsdielectric measurements

Platinum electrodes

Copper
slab

Sample chamber

Open-ended coaxial probe Parallel-plate capacitor Pin-like electrodes

Raicu, V., Measurement 
Science & Technology, 1995. 
6(4): 410-414

Schwan, H.P., In: Physical 
Techniques in Biological 
Research, W.L. Nastuk, 
Editor. 1963, Academic Press: 
New York, p. 323-407

Stoneman et al, J. 
Noncrystalline Solids, in press

TissueTissue

Coaxial
electrodes



Dilute, random suspensions of cellsDilute, random suspensions of cells
DebyeDebye--type dispersiontype dispersion

 Follow Maxwell-Wagner model  particles subjected to uniform far-field
 Particle shape introduces some quantitative but not qualitative differences

Electrode polarization
Debye plateau

Debye plateau

Electrode polarization



Specific plasma membrane capacitance is easily determined:

 Membrane thickness ~3-4 nm (membrane thickness determined using dielectric 
spectroscopy by Fricke, before the electron-microscope era).

Dilute, random suspensions of cellsDilute, random suspensions of cells
Extraction of cellular parametersExtraction of cellular parameters

 Erythrocyte ghosts: 0.72 F/cm2 [K. Asami, T. Takahashi, and S. 
Takashima, 1989, Biochim. Biophys. Acta, 1010: 49-55]

 Plant protoplasts: 0.6-0.7 F/cm2 [Asami and Yamaguchi, 1992, Biophys. 
J., 63: 1493-1499]

Electrical properties of other cell phases have also been also determined
[F. Bordi, C. Cametti, and T. Gili, 2002, J. Non-Crystalline Solids 305: 278–284]
[Y. Polevaya, I. Ermolina, M. Schlesinger, B-Z. Ginzburg, Y. Feldman, 1999, 
Biochim. Biophys. Acta 1419: 257-271]
[V. Raicu, G. Raicu and G. Turcu, 1996, Biochim. Biophys. Acta, 1274: 143-148]



Dilute, random suspensions of cellsDilute, random suspensions of cells
Membrane Membrane permeabilizationpermeabilization by surfactantsby surfactants

Loss of electrolyte

V. Raicu, C. Gusbeth, G. Raicu, D. Anghel, G. Turcu, 1998, Biochim. Biophys. Acta, 1379: 7-15



Dielectric modeling of rat liverDielectric modeling of rat liver
MaxwellMaxwell--Wagner theory (dilute suspension)Wagner theory (dilute suspension)

V. Raicu, T. Saibara, H. Enzan and A. Irimajiri, Bioelectrochem. Bioenerg., 47 (1998) 333-342

 Although all cellular and subcellular components were taken into account, the fit 
was rather poor.
 Cell volume fraction is high in liver (in excess of 70 %). Maxwell-Wagner 
approximations break down.



Dielectric modeling of rat liverDielectric modeling of rat liver

V. Raicu, T. Saibara, H. Enzan and A. Irimajiri, Bioelectrochem. Bioenerg., 47 (1998) 333-342

 The improvements brought about by EMT were only marginal and the electrical 
parameters of cells were incorrect (compared to known values for many cell types).
 One reason is that the cells are not randomly dispersed.

EMT for random concentrated suspensionsEMT for random concentrated suspensions



Dielectric modeling of rat liverDielectric modeling of rat liver
Analysis using EMTAnalysis using EMT--DDIDDI

V. Raicu, T. Saibara, H. Enzan and A. Irimajiri, Bioelectrochem. Bioenerg., 47 (1998) 333-342

 The improvement was significant and electrical parameters of cells were 
correct (compared to known values for many cell types).
 Yet, the theory failed to account for the absence of Debye-like plateau at low 
frequencies (perhaps because of the disconnected geometry of the model)

Structure of liver 
parenchyma

Model used: 
disconnected 
liver plates



Aggregation effects in cell suspensions Aggregation effects in cell suspensions 
RBC in blood plasma vs. RBC in PBSRBC in blood plasma vs. RBC in PBS

RBC in plasma forms reversible structures (rouleaux), 
through fibrinogen-mediated bridging, even at low 

concentrations  aggregation effects can be separated 
from concentration effects using RBC.

Photo obtained from: 
http://bloodjournal.hematologylibrary.org/cgi/content/full/

107/11/4205



Normal vs. abnormal tissue structureNormal vs. abnormal tissue structure
Detection of breast cancerDetection of breast cancer

Since dielectric spectroscopy is sensitive to supra-cellular architecture, it can be used 
to distinguish normal from cancerous tissues

M. R. Stoneman, M. Kosempa, W. D. Gregory, C. W. Gregory, J. J. Marx, W. Mikkelson, J. 
Tjoe, and V. Raicu, 2007, Phys. Med. Biol., 52: 6589-6604



Normal vs. abnormal tissue structureNormal vs. abnormal tissue structure
11--D scanning of breast tumorD scanning of breast tumor

This preliminary study constitutes a primitive form of (one-dimensional) imaging.

M. R. Stoneman, M. Kosempa, W. D. Gregory, C. W. Gregory, J. J. Marx, W. Mikkelson, J. 
Tjoe, and V. Raicu, 2007, Phys. Med. Biol., 52: 6589-6604



Active electrode
Connected to the virtual ground

Unconnected

Connected

 A coaxial probe, created from an array of planar electrodes, is scanned 
across the sample using electronic switches.

M. Habibi, D. Klemer, V. Raicu, EMBC Conference Proceedings, 2009, in press

22--D imaging using dielectric spectroscopyD imaging using dielectric spectroscopy
The The ‘‘travellingtravelling’’ coaxial probecoaxial probe



Concentrated 
yeast cell 
suspension 
embedded in 
agar gel

M. Habibi, D. Klemer, V. Raicu, to be submitted, 2009

22--D imaging using dielectric spectroscopyD imaging using dielectric spectroscopy
Dielectric measurements of a tissue phantomDielectric measurements of a tissue phantom



22--D imaging using dielectric spectroscopyD imaging using dielectric spectroscopy
Spatial mapping of the tissue phantomSpatial mapping of the tissue phantom
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M. Habibi, D. Klemer, and V. Raicu, to be submitted, 2009



Dielectric dispersion of rat brain in vivoDielectric dispersion of rat brain in vivo
 Dielectric dispersion of brain was best represented by a sum between a Cole-
Cole and a Debye dispersion function
 In addition, neurons and astrocytes in brain are connected not only by chemical 
synapses, but also by electrical synapses, which are also known as gap-junctions

M. Florescu, V. Sahore, M. Stoneman, et al., to be submitted, 2009



Anesthetic effects on gapAnesthetic effects on gap--junctions in brainjunctions in brain
We treated rats with:
 an anesthetic (Isoflurane) known to act as a gap-junction blocker (i.e., to 
disconnect cells from one-another)
 a non-anesthetic (CBX) that acts as a gap-junction blocker

M. Florescu, V. Sahore, M. Stoneman, et al., to be submitted, 2009



Summary and outlookSummary and outlook
Dielectric spectroscopy may be used to determine intrinsic 
electrical parameters of cells in dilute suspensions.

The supra-cellular architecture in tissues causes non-Debye 
dielectric behavior, which can be used to:
 Image inhomogeneities in tissues
 Detect structural differences between normal and cancerous tissues
 Monitor changes in brain function by detecting changes in the inter-
cellular connectivity between neurons

Novel theories are needed for tissues, to incorporate:
 High cellular concentrations (EMT)
 Cell aggregation (e.g., using EMT-DDI or higher order corrections)
 Percolative structures (i.e., clusters are connected with other clusters)
 Coupling between cytoplasms through gap-junctions
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