The Problems of Electric Polarization

Dielectrics in Static Field

Yuri Feldman and Alexander Puzenko

Tutorial lecture
The electric moment of a point charge relative to a fixed point is defined as \(e \mathbf{r} \), where \(\mathbf{r} \) is the radius vector from the fixed point to \(e \).

Consequently, the total dipole moment of a whole system of charges \(e_i \) relative to a fixed origin is defined as:

\[
m = \sum_i e_i \mathbf{r}_i
\]

A dielectric substance can be considered as consisting of elementary charges \(e_i \), and if it contains no net charge.

If the net charge is zero, the electric moment is independent of the choice of the origin. When the origin is displaced over a distance \(\mathbf{r}_o \), the change in \(m \) is given by:
\[\Delta m = - \sum_i e_i r_o = -r_o \sum_i e_i \]

Thus \(\Delta m \) equals zero when the net charge is zero.

Then \(m \) is independent of the choice of the origin. In this case equation (1.1) can be written in another way by the introduction of the electric centers of gravity of the positive and the negative charges.

These centers are defined by the equations:

\[\sum_{positive} e_i r_i = r_p \quad \sum_{positive} e_i = r_p Q \]

and

\[\sum_{negative} e_i r_i = r_n \quad \sum_{negative} e_i = r_n Q \]

in which the radius vectors from the origin to the centers are represented by \(r_p \) and \(r_n \) respectively and the total positive charge is called \(Q \).

\[m = (r_p - r_n)Q \]
The difference $r_p - r_n$ is equal to the vector distance between the centers of gravity, represented by a vector \mathbf{a}, pointing from the negative to the positive center (Fig.1).

Thus we have:

$$m = \mathbf{a}Q$$

Therefore the electric moment of a system of charges with zero net charge is generally called the electric dipole moment of the system.

A simple case is a system consisting of only two point charges $+e$ and $-e$ at a distance a.

Such a system is called a (physical) electric dipole, its moment is equal to ea, the vector \mathbf{a} pointing from the negative to the positive charge.

Under the influence of the external electrical field, the positive and negative charges in the particle are moved apart: the particle is polarized. In general, these induced dipoles can be treated as ideal; permanent dipoles, however, may generally not be treated as ideal when the field at molecular distances is to be calculated.
The values of *molecular dipole moments* are usually expressed in *Debye units*. The Debye unit, abbreviated as D, equals 10^{-18} electrostatic units (e.s.u.).

The permanent dipole moments of non-symmetrical molecules generally lie between 0.5 and 5D. It is come from the value of the elementary charge e_o that is $4.4 \cdot 10^{-10}$ e.s.u. and the distance s of the charge centers in the molecules amount to about $10^{-9}-10^{-8}$ cm.

In the case of polymers and biopolymers one can meet much higher values of dipole moments ~ hundreds or even thousands of Debye units. To transfer these units to *SI system* one have to take into account that $1D=3.3 \cdot 10^{-30}$ coulombs\cdotm.
Types of polarization

Deformation polarization

a. **Electron polarization** - the displacement of nuclear and electrons in the atom under the influence of external electric field. As electrons are very light they have a rapid response to the field changes; they may even follow the field at optical frequencies.

b. **Atomic polarization** - the displacement of atoms or atom groups in the molecule under the influence of external electric field.
Orientation polarization:

The electric field tends to direct the permanent dipoles.
In an ionic lattice, the positive ions are displaced in the direction of the applied electric field whilst the negative ions are displaced in the opposite direction, giving a resultant dipole moment to the whole body.
The vector fields E and D.

For measurement inside matter, the definition of E in vacuum, cannot be used.

There are two different approaches of the problem how to measure E inside matter:

1. The matter can be considered as a continuum in which, by a sort of thought experiment, virtual cavities were made. (Kelvin, Maxwell). Inside these cavities, the vacuum definition of E can be used.

2. The molecular structure of matter considered as a collection of point charges in vacuum forming clusters of various types. The application here of the vacuum definition of E (Lorentz, Rosenfeld, Mazur, de Groot) gives a so-called microscopic field. If this microscopic field is averaged, one obtains the macroscopic or Maxwell field E.
The **main problem of physics of dielectrics** is passing from a phenomenological macroscopic linear dielectric response to the microscopic structure in terms of electrons, nuclei, atoms, molecules and ions. In general case the problem is still unresolved completely.

For the solution of this problem of how to determine the electric field inside matter, it is also possible first to introduce a new vector field D in such a way that for this field the *source equation will be valid*.

According to Maxwell, matter is regarded as a continuum. To use the definition of the field vector E, a *cavity* has to be made around the point where the field is to be determined.

However, the force acting upon a test point charge in this cavity will generally depend on the *shape of the cavity*, since this force is at least partly determined by effects due to the walls of the cavity. This is the reason that two vector fields defined in physics of dielectrics:

The **electric field strength** E satisfying $\text{curl } E = 0$, and the **dielectric displacement** D, satisfying $\text{div } D = 4\pi \rho$.
The Maxwell continuum can be treated as a dipole density of matter. Difference between the values of the field vectors arises from differences in their sources. Both the external charges and the dipole density of the piece of matter act as sources of these vectors.

The external charges contribute to \(D \) and to \(E \) in the same manner. Because of the different cavities in which the field vectors are measured, the contribution of dipole density to \(D \) and \(E \) are not the same. It can be shown that

\[
D - E = 4\pi P
\]

where \(P \) called the POLARIZATION.

Generally, the polarization \(P \) depends on the electric strength \(E \). The electric field polarizes the dielectric.

The dependence of \(P \) on \(E \) can take several forms:

\[
P = \chi E
\]
The polarization proportional to the field strength. The proportional factor χ is called the **dielectric susceptibility**.

$$D = E + 4\pi P = (1 + 4\pi \chi)E = \varepsilon E$$

in which ε is called the **dielectric permittivity**. It is also called the **dielectric constant**, because it is independent of the field strength. It is, however, dependent on the frequency of applied field, the temperature, the density (or the pressure) and the chemical composition of the system.
To investigate the dependence of the polarization on molecular composition, it is convenient to assume the total polarization P to be divided into two parts: the induced polarization P_α caused by the translation effects, and the dipole polarization P_μ caused by the orientation of the permanent dipoles.

$$\frac{\varepsilon - 1}{4\pi} E = P_\alpha + P_\mu$$

A **non-polar dielectric** is one whose molecules possess no permanent dipole moment.

A **polar dielectric** is one in which the individual molecules possess a dipole moment even in the absence of any applied field (i.e. the center of positive charge is displaced from the center of negative charge).
Induced and orientation polarizations

Orientation polarization

\[
\frac{1}{\alpha} P_{\mu} = \sum_{k} N_k \langle \mu_k \rangle
\]

- \(N_k \) is the number of particles per volume unit;
- \(\alpha \) is the scalar polarizability of a particle;
- \(E_i \) is the Internal Field, the average field strength acting upon that particle, as defined as the external field at the position of the particle minus the field due to the particle itself;
- \(\langle \mu_k \rangle \) is the value of the permanent dipole vector averaged over all orientations.

\[
\alpha = \frac{\varepsilon - 1}{\varepsilon + 2} a^3
\]
Orientation polarization, Average dipole moment

The energy of the random oriented permanent dipole μ in the electric field dependent on the part of the electric field tending to direct the permanent dipoles. This part of the field is called the **directing field** E_d.

$$W_k = -\mu_k \cdot E_d = -\mu E_d \cos \theta_k$$

Averaging

$$\langle W \rangle = -\mu E_d \langle \cos \theta \rangle$$

The relative probabilities of the various orientations of dipole depend on this energy according to Boltzmann’s distribution law:

$$p(\theta)d\theta \sim \exp \left(\frac{\mu E_d \cos \theta}{kT} \right) \frac{1}{2} \sin \theta d\theta$$
\[
\cos \theta = \frac{\int_0^\infty \cos \theta e^{-\frac{\mu E_d \cos \theta}{kT}} \frac{1}{2} \sin \theta d\theta}{\int_0^\infty e^{-\frac{\mu E_d \cos \theta}{kT}} \frac{1}{2} \sin \theta d\theta} \cdot \frac{1}{\int_{-a}^a e^x dx} = \frac{1}{\int_{-a}^a e^x dx}
\]

where \(\frac{\mu E_d \cos \theta}{kT} = x \) and \(\frac{\mu E_d}{kT} = a \)

\(L(a) \) is called the Langevin function.

In Fig. the Langevin function \(L(a) \) is plotted against \(a \). \(L(a) \) has a limiting value \(1 \), which was to be expected since this is the maximum of \(\cos \theta \). For small values of \(a \), \(\langle \cos \theta \rangle \) is linear in \(E_d \):

\[
\cos \theta = \frac{1}{3} a = \frac{\mu E_d}{3 kT} \quad \text{if} \quad 0 \leq a \ll 1
\]
The approximation of \(\cos \) may be used as long as
\[
a = \frac{\mu E_d}{kT} < 0.1 \text{ or } E_d < \frac{0.1 kT}{\mu}.
\]

At room temperature (\(T=300^\circ \text{ K} \)) this gives for a dipole of \(4D \):
\[
E_d < \frac{0.1 kT}{\mu} = 3 \times 10^5 \text{ v/cm}
\]

For a value of \(\mu \) smaller than the large value of \(4D \), the value calculated for \(E_d \) is even larger. In usual dielectric measurements, \(E_d \) is much smaller than \(10^5 \text{ v/cm} \) and the use of \(\cos \) is allowed.

From the linear response approximation it follows that:
\[
\mu = \mu \langle \cos \theta \rangle = \frac{\mu^2}{3kT} E_d
\]

Substituting this into the main relationship for the orientation polarization, we get:
\[
P_\mu = \sum_k N_k \frac{\mu^2}{3kT} (E_d)_k
\]
Fundamental equation

\[
\frac{\varepsilon - 1}{4\pi} E = P_\alpha + P_\mu
\]

This is the **fundamental equation** is the starting point for expressing \(E_i \) and \(E_d \) as functions of the Maxwell field \(E \) and the dielectric constant \(\varepsilon \).
Let us put a dielectric sphere of radius a and dielectric constant ε_2, in a dielectric extending to infinity, with dielectric constant ε_1, to which an external electric field is applied. Here the potential satisfies Laplace's equation $\Delta \phi = 0$, since no charges are present except the charges at a great distance required to maintain the external field. On the surface of the sphere Laplace's equation is not valid, since there is an apparent surface charge.

Inside the sphere, however, Laplace's equation can be used again. Therefore, for the description of ϕ, we use two different functions, ϕ_1 and ϕ_2, outside and inside the sphere, respectively.
Let us consider the center of the sphere as the origin of the coordinate system, we **choose z-axis** in the direction of the uniform field. Following relation in the terms of **Legendre polynomial** represents the general solution of **Laplace’s equation**:

\[
\phi_1 = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right) P_n(\cos \theta) \\
\phi_2 = \sum_{n=0}^{\infty} \left(C_n r^n + \frac{D_n}{r^{n+1}} \right) P_n(\cos \theta)
\]

The boundary conditions are:

1. \((\phi_1)_{r=\infty} = -E_0 z = -E_0 r \cos \theta \)
2. \((\phi_1)_{r=a} = (\phi_2)_{r=a} \) Since \(\phi \) is continuous across a boundary
3. \(\varepsilon_1 \left(\frac{d\phi_1}{dr} \right)_{r=a} = \varepsilon_2 \left(\frac{d\phi_2}{dr} \right)_{r=a} \) since the normal component of \(D \) must be continuous at the surface of the sphere
4. At the center of the sphere \((r=0) \) \(\phi_2 \) must not have a singularity.
The total field E_2 inside the sphere is accordingly is given by:

$$E_2 = \frac{3\varepsilon_1}{2\varepsilon_1 + \varepsilon_2} E_0$$

A spherical cavity in dielectric

In the special case of a spherical cavity in dielectric ($\varepsilon_1 = \varepsilon; \varepsilon_2 = 1$), equation is reduced to:

$$E_C = \frac{3\varepsilon}{2\varepsilon + 1} E_0$$

This field is called the "cavity field". The lines of dielectric displacement given by $D_c = 3D_0/(2\varepsilon + 1)$ are more dense in the surrounding dielectric, since D is larger in the dielectric than in the cavity.
A dielectric sphere in vacuum

For a dielectric sphere in a vacuum ($\varepsilon_1 = 1; \varepsilon_2 = \varepsilon$), the equation is reduced to:

$$E = \frac{3}{2\varepsilon + 1} E_0$$

where E is the field inside the sphere.

The density of the lines of dielectric displacement D_s is higher in the sphere than in the surrounding vacuum, since inside the sphere $D_s = \frac{3\varepsilon E_0}{(\varepsilon + 2)}$. Consequently, it is larger than E_0.

The field outside the sphere due to the apparent surface charges is the same as the field that would be caused by a dipole m at the center of the sphere, surrounded by a vacuum, and given by:

$$m = \frac{\varepsilon - 1}{\varepsilon + 2} a^3 E_0$$
Two types of interaction forces:

- Short range forces - interaction between nearest neighbors:
 - Chemical bonds,
 - Van der Waals attraction,
 - Repulsion forces,
 etc.

Long range dipolar interaction forces

Dipole-dipole interaction
Dipole-charge interaction

Due to the long range of the dipolar forces an accurate calculation of the interaction of a particular dipole with all other dipoles of a specimen would be very complicated.

The different approaches were developed for solving this problem.
Non-polar dielectrics. Lorentz's field. Clausius-Massotti formula.

For a non-polar system, the fundamental equation for the dielectric permittivity is simplified to:

\[
\frac{\varepsilon - 1}{4\pi} E = \sum_k N_k \alpha_k (E_k)
\]

In this case, only the relation between the internal field and the Maxwell field has to be determined. Let us use the Lorentz approach in this case. He calculated the internal field in homogeneously polarized matter as the field in a virtual spherical cavity.

\[
E_C = \frac{3\varepsilon}{2\varepsilon + 1} E
\]

\[
E_L = \frac{\varepsilon + 2}{3} E
\]

Lorentz’s field

The apparent surface charges

Lines of dielectric displacement
\[
\frac{\varepsilon - 1}{4\pi} E = \sum_k N_k \alpha_k (E_i)_k
\]

For a pure compound (k=1)

\[
E_i = E_L = \frac{\varepsilon + 2}{3} E
\]

Clausius-Massotti formula

\[
\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{4\pi}{3} N\alpha
\]
Debye theory; Gases and polar molecules in non-polar solvent

\[\frac{\varepsilon - 1}{4\pi} E = \sum_k \left(\frac{1}{4\pi \epsilon^2} \right) E_k \]

\[k = 1; \quad E = E_1 \]

But this is generally, not well made the connection between the molecular parameter of the substance being tested and the macroscopic (phenomenological) parameter that can be experimentally measured.

For gases at normal pressures: In this case one can write

\[\varepsilon - 1 = 4\pi N \left(\alpha + \frac{\mu^2}{3kT} \right) \]
The reaction field and Onsager’s approach

When a molecule with a permanent dipole moment μ is surrounded by other particles, the inhomogeneous field of the permanent dipole polarizes its environment. In the surrounding particles, polarizability are induced and moments proportional to the polarizability are induced. If these particles have a permanent dipole moment their orientation is influenced. To calculate this effect one can use a simple model: an ideal dipole in a spherical cavity.

The inhomogeneous field of a dipole

Electric dipole field lines

Line of force in the dipole field
The reaction field of a non-polarizable point dipole

Let us assume that only one kind of molecule is presented and \(a \) is value approximately equal to what is generally considered to be the “molecular radius”.

Solving the Laplace equation with slightly different boundary conditions:

1. \((\phi_1)_{r \to \infty} = 0 \)
2. \((\phi_1)_{r=a} = (\phi_2)_{r=a} \)
3. \(\varepsilon \left(\frac{d\phi_1}{dr} \right)_{r=a} = \left(\frac{d\phi_2}{dr} \right)_{r=a} \)

We can calculate:

The field in the cavity is a superposition of the dipole field in vacuum and a uniform field \(R \), given by:

\[
R = \frac{1}{a^3} \frac{2(\varepsilon - 1)}{2\varepsilon + 1} \mu
\]

and the factor of the reaction field is equal to

\[
f = \frac{1}{a^3} \frac{2(\varepsilon - 1)}{2\varepsilon + 1}
\]
Formally, the field of dielectric can be described as the field of a virtual dipole μ_c at the center of the cavity, given by:

$$\mu_c = \frac{3\varepsilon}{2\varepsilon + 1} \mu$$

The presented model involves a number of simplifications, since the dipole is assumed to be ideal and located at the center of the molecule, which is supposed to be spherical and surrounded by a continuous dielectric.

The reaction field of a polarized point dipole

In this case the permanent dipole has an average polarizability α, and therefore the reaction field R induces a dipole αR and satisfies the equation:

$$R = f(\mu + \alpha R)$$

Under the influence of the reaction field the dipole moment is increased considerably, the increased moment is:

$$\mu^* = \mu + \alpha R$$
Considering

\[\frac{\alpha}{a^3} = \frac{n^2 - 1}{n^2 + 2} \quad \epsilon_\infty = n^2 \]

We can obtain that

\[\frac{\mu^*}{\mu} = \frac{2\epsilon + 1}{2\epsilon + n^2} \frac{n^2 + 2}{3} \]

In the case of polar dielectrics, the molecules have a permanent dipole moment \(\mu \), and both parts of the fundamental must be taken into account.

\[
\frac{\epsilon - 1}{4\pi} E = \sum_k N_k \left[\alpha_k (E_i)_k + \frac{\mu_k^2}{3kT} (E_d)_k \right]
\]

In the case of non-polar liquids the internal field can be considered as the sum of two parts; one being the cavity field and another the reaction field of the dipole induced in the molecule \(E_i = E_c + R \).
For polar molecules the internal field can also be built up from the cavity field and the reaction field, taking into account now the reaction field of the total dipole moment of the molecule.

The angle between the reaction field of the permanent part of the dipole moment and the permanent dipole moment itself will be constant during the movements of the molecule.

It means that in a spherical cavity the permanent dipole moment and the reaction field caused by it will have the same direction. Therefore, this reaction field R does not influence the direction of the dipole moment of the molecule under consideration, and does not contribute to the directing field E_d.

On the other hand, the reaction field does contribute to the internal field E_i, because it polarizes the molecule. As a result, we find a difference between the internal field E_i and the directing field E_d.
Since the reaction field R belongs to one particular orientation of the dipole moment, the difference between E_i and E_d will give by the value of the reaction field averaged over all orientations of the polar molecule:

$$E_i - E_d = \langle R \rangle$$

The direction field E_d can be obtained by the following procedure:

1. **α)** remove the permanent dipole of a molecule without changing its polarizability;
2. **β)** let the surrounding dielectric adapt itself to the new situation;
3. **γ)** then fix the charge distribution of the surroundings and remove the central molecule.

The average field in the cavity so obtained is equal to the value of E_d that is to be calculated, since we have eliminated the contribution of R to E_i by removing the permanent dipole of the molecule.
This equation is generally called the Onsager equation. It makes possible the computation of the permanent dipole moment of a molecule from the dielectric constant of the pure dipole liquid if the density and \(\varepsilon \), \(\sigma \) are known.

\[
\varepsilon - \varepsilon_0 = \frac{\alpha \beta}{\varepsilon \sigma} + \frac{\beta \gamma}{\varepsilon \sigma^2} + \frac{\alpha \gamma}{\varepsilon \sigma^3} = \frac{N}{kT}
\]

TABLE

<table>
<thead>
<tr>
<th>Compound</th>
<th>ref.</th>
<th>(\mu_{\text{ons}})</th>
<th>(\mu_{\text{gas}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td>a, b, c</td>
<td>1.74</td>
<td>1.87</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>a, b, c</td>
<td>1.55</td>
<td>1.81</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>b, c</td>
<td>1.27</td>
<td>1.62</td>
</tr>
<tr>
<td>Chloroform</td>
<td>a</td>
<td>1.18</td>
<td>1.01</td>
</tr>
<tr>
<td>Bromoform</td>
<td>d</td>
<td>0.92</td>
<td>0.99</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>a</td>
<td>3.44</td>
<td>3.46</td>
</tr>
<tr>
<td>Cyanomethane</td>
<td>a, c</td>
<td>3.39</td>
<td>3.92</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>a</td>
<td>2.45</td>
<td>2.27</td>
</tr>
<tr>
<td>Propanone</td>
<td>a</td>
<td>3.03</td>
<td>2.88</td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>b</td>
<td>0.66</td>
<td>0.61</td>
</tr>
<tr>
<td>2-Chloro-2-methylpropane</td>
<td>b</td>
<td>2.39</td>
<td>2.13</td>
</tr>
<tr>
<td>Ethoxyethane</td>
<td>a, b</td>
<td>1.40</td>
<td>1.15</td>
</tr>
<tr>
<td>Ethylthioethane</td>
<td>a</td>
<td>1.64</td>
<td>1.54</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>b, d</td>
<td>1.40</td>
<td>1.67</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>e</td>
<td>1.33</td>
<td>1.70</td>
</tr>
<tr>
<td>Iodobenzene</td>
<td>c</td>
<td>1.05</td>
<td>1.70</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>b, d</td>
<td>4.06</td>
<td>4.22</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>a</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Cyanobenzene</td>
<td>b</td>
<td>3.48</td>
<td>4.18</td>
</tr>
<tr>
<td>Hydrogen cyanide</td>
<td>b</td>
<td>5.66</td>
<td>2.98</td>
</tr>
</tbody>
</table>

\(a \) Estimate of Buckley and Maryott,\(^{20} \)

\(b \) Estimate of Weaver and Parry,\(^{19} \)

\(c \) Estimate of Abbott and Bolton,\(^{21} \)
Relationships between the different kinds of electric fields

In order to describe polarization of matter, the different kinds of electric fields were introduced: Maxwell’s field \(E \), internal field \(E_i \), Lorentz field \(E_L \), direction field \(E_d \), reaction field \(R \) and the cavity field \(E_C \).

Let us consider the relationships between these fields in the different systems.

For non-polar liquids, the internal field can be considered as the sum of two parts: one being the cavity field and the other the reaction field of the dipole induced in the molecule:

\[
\varepsilon + \frac{2}{3} E
\]

For polar molecules, the internal field can also be built up from the cavity field and the reaction field, taking into account now the reaction field of the total dipole moment of the molecule.

Since the reaction field \(R \) belongs to one particular orientation of the dipole moment, the difference between \(E_i \) and \(E_d \) will give by the value of the reaction field averaged over all orientations of the polar molecule:

\[
E_d = E_i E_i E_d E_C \langle R \rangle = \frac{\varepsilon + 2}{3} E
\]

Gases and polar molecules in non-polar solvent
The Kirkwood–Froehlich approach

In the above approximations we considered non-polar systems, polar dilute systems and polar systems without short range interactions. In all these cases the dipole-dipole interactions between molecules were not taken into account.

A more general approach was developed by Kirkwood and subsequently refined by Froehlich. This approach takes into account the dipole-dipole interactions, which appears in a more dense state under the influence of the short range interactions.
In this case the external field working in the sphere is the cavity field

\[E_0 = E_c = \frac{3\varepsilon}{2\varepsilon + 1} E \]

\(E \) is the Maxwell field in the material outside the sphere

\[(\varepsilon - 1) = 4\pi n \left(\frac{\partial E_0}{\partial E} \right)_{E=0} \left[\frac{1}{n} < \mathbf{e} \cdot \mathbf{A} \cdot \mathbf{e} >_0 + \frac{1}{3kTn} < M^2 >_0 \right] \]

Here \(n = \mathcal{N}/V \) is the number density, and the tensor \(\mathbf{A} \) plays the role of a polarizability;

\[< M^2 >_0 = \sum_{i=1}^{\mathcal{N}} \sum_{j=1}^{\mathcal{N}} < \mu_i, \mu_j >_0 \quad \quad M = \sum_{i=1}^{\mathcal{N}} \mu_i \]

For non polarizable molecules \(< \mathbf{e} \cdot \mathbf{A} \cdot \mathbf{e} >_0 = 0 \)

\[(\varepsilon - 1) = \frac{4\pi}{V} \frac{3\varepsilon}{2\varepsilon + 1} \frac{< M^2 >_0}{3kT} \]

\[\left< M^2 \right>_0 = \sum_{i=1}^{\mathcal{N}} \int dX^\mathcal{N} \mu_i \cdot M \exp(-U / kT) \]

\[\frac{\int dX^\mathcal{N} \exp(-U / kT)}{\int dX^\mathcal{N} \exp(-U / kT)} \]
In this equation the superscript \mathcal{N} to dX to emphasize that the integration is performed over the positions and orientations of \mathcal{N} molecules (here $dX = r^2 \sin \theta dr d\theta d\phi$, is the expression for a volume element in spherical coordinates).

Since μ_i is a function of the orientation of the i-th molecule only, the integration over the positions and orientations of all other molecules, denoted as $\mathcal{N} - i$, can be carried out first. In this way we obtain (apart from a normalizing factor) the average moment of the sphere in the field of the i-th dipole with fixed orientation. The averaged moment, denoted by M_i^*, can be written as:

$$M_i^* = \int dX^{\mathcal{N} - i} M \exp(-U/kT) \int dX^{\mathcal{N} - i} \exp(-U/kT)$$

The average moment M_i^* is a function of the position and orientation of the i-th molecule only.

Denoting the position and orientation coordinates of the i-th molecule by X_i and using a weight factor $p(X_i)$

$$p(X_i) = \frac{\int dX^{\mathcal{N} - i} \exp(-U/kT)}{\int dX^{\mathcal{N}} \exp(-U/kT)}$$
\[
\langle M^2 \rangle_0 = \sum_{i=1}^{\mathcal{N}} \int p(X^i) \mu_i \cdot \mathbf{M}_i^* dX^i = \mathcal{N} \int p(X^i) \mu_i \cdot \mathbf{M}_i dX^i
\]

\[
\mu_i \cdot \mathbf{M}_i^* = \mu^2 \sum_{j=1}^{\mathcal{N}} \int dX^{\mathcal{N}-i} \cos \theta_{ij} \exp(-U/kT) \int dX^{\mathcal{N}-i} \exp(-U/kT)
\]

\[
\langle M^2 \rangle_0 = \mathcal{N} \mu^2 \sum_{j=1}^{\mathcal{N}} \int p(X^i) \int dX^{\mathcal{N}-i} \cos \theta_{ij} \exp(-U/kT) \int dX^{\mathcal{N}-i} \exp(-U/kT) dX^i
\]

\[
\langle \cos \theta_{ij} \rangle = \int p(X^i) \int dX^{\mathcal{N}-i} \cos \theta_{ij} \exp(-U/kT) \int dX^{\mathcal{N}-i} \exp(-U/kT) dX^i
\]

\[
\langle M^2 \rangle_0 = \mathcal{N} \mu^2 \sum_{j=1}^{\mathcal{N}} \langle \cos \theta_{ij} \rangle
\]
The left part of the Onsager equation for the non polarized molecules

\[
\frac{(\varepsilon - 1)(2\varepsilon + 1)}{12\pi\varepsilon} = \frac{N}{3kT} \int p(X^i) \mu_i \cdot M_i^* dX^i = \frac{N}{3kT} \mu^2 \sum_{j=1}^{\mathcal{N}} < \cos \theta_{ij} >
\]

The deviations of \(M_i^* \) from the value \(\mu_i \) are the result of molecular interactions between the \(i \)-th molecule and its neighbors.

It is well known that liquids are characterized by short-range order and long-range disorder. The correlations between the orientations (and also between positions) due to the short-range ordering will lead to values of \(M_i^* \) differing from \(\mu_i \). This is the reason that Kirkwood introduced a correlation factor \(g \) which accounted for the deviations of

\[
\int p(X^i) \mu_i \cdot M_i^* dX^i = \mu^2 \sum_{j=1}^{\mathcal{N}} < \cos \theta_{ij} > \quad \text{from the value } \mu^2:
\]

\[
g = \frac{1}{\mu^2} \int p(X^i) \mu_i \cdot M_i^* dX^i = \sum_{j=1}^{\mathcal{N}} < \cos \theta_{ij} >
\]
When there is no more correlation between the molecular orientations than can be accounted for with the help of the continuum method, one has \(g = 1 \Rightarrow \) we are going to \textit{Onsager} relation for the non-polarizable case, for rigid dipoles with \(\varepsilon_\infty = 1 \).

An approximate expression for the \textit{Kirkwood correlation factor} can be derived by taking only nearest-neighbors interactions into account. In that case the sphere is shrunk to contain only the \textit{i-th} molecule and its \(z \) nearest neighbors. We then have:

\[
\left(\frac{\varepsilon - 1}{12 \pi \varepsilon} \right) \left(\frac{2 \varepsilon + 1}{12 \pi \varepsilon} \right) = \frac{N}{3kT} g \mu^2
\]

Since after averaging the result of the integration will be not depend on the value of \(j \), all terms in the summation are equal and we may write:

\[
g = 1 + z \left\langle \cos \theta_{ij} \right\rangle
\]
When the molecules prefer an ordering with anti-parallel dipoles, $g \leq 1$.

When the molecules tend to direct themselves with parallel dipole moments, $\langle \cos \theta_{ij} \rangle$ will be positive and $g > 1$.

g will be different from 1 when $\langle \cos \theta_{ij} \rangle \neq 0$, i.e. when there is correlation between the orientations of neighboring molecules.

Approximation of Fröhlich

$$g \mu^2 = \frac{9k}{4}$$
Main relationships in static dielectric theory

Non-polar systems

\[
\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{4\pi}{3} N\alpha
\]

Clausius-Mossotti equation

Polar diluted systems

\[
\varepsilon - 1 = 4\pi N \left(\alpha + \frac{\mu^2}{3kT} \right)
\]

Debye equation

Polar systems

\[
\mu^2 = \frac{9kT}{4\pi N} \frac{(\varepsilon - \varepsilon_\infty)(2\varepsilon + \varepsilon_\infty)}{\varepsilon(\varepsilon_\infty + 2)^2}
\]

Onsager Equation

Polar systems, short range interactions

\[
g\mu^2 = \frac{9kT}{4\pi} \frac{(\varepsilon - \varepsilon_\infty)(2\varepsilon + \varepsilon_\infty)}{\varepsilon(\varepsilon_\infty + 2)^2}
\]

Kirkwood-Fröhlich equation