BDS2016 Tutorials:

Local Dielectric Spectroscopy by Scanning Probes

Massimiliano Labardi

CNR, Institute for Physico-Chemical Processes (IPCF)

Pisa (Italy)

BDS2016 Conference CNR Campus, Pisa, 11.09.2016

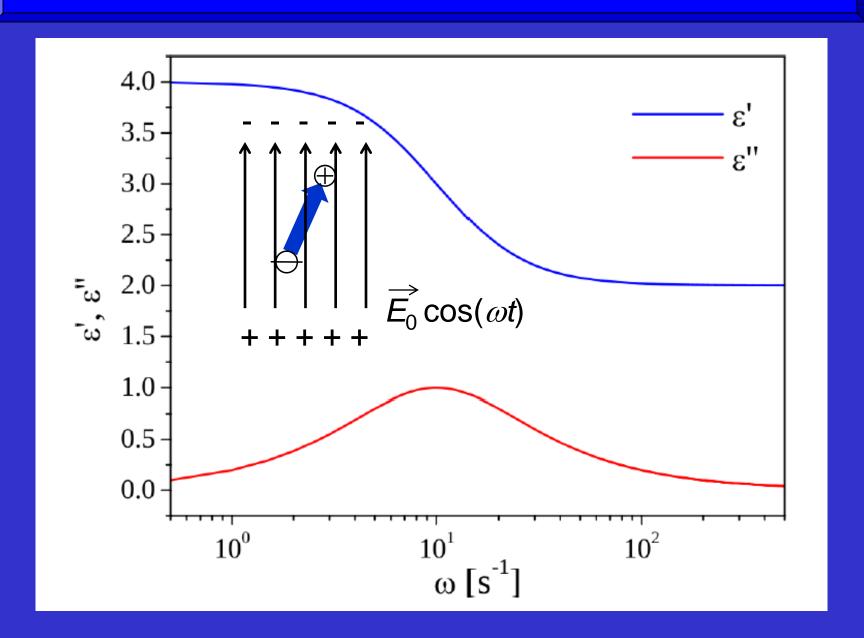
OUTLINE

• Broadband Dielectric Spectroscopy (BDS): Information on relaxation dynamics through electric polarization.

• Local Dielectric Spectroscopy (LDS, or nanoDS): the same kind of information, on a nanometer-size volume of material.

 How Local Dielectric Spectroscopy can be realized by resorting to scanning probe techniques like the Atomic Force Microscope.

ORIENTATIONAL DIELECTRIC RESPONSE



BROADBAND DIELECTRIC SPECTROSCOPY

$$V(t)=V_0\cos(\omega t)$$

$$V(t)=V_0\cos(\omega t)$$
 $I(t)=I_0\cos(\omega t-\delta)$

$$\varepsilon_{\rm r}(\omega)$$

$$\hat{Z}(\omega) = \frac{\hat{V}(\omega)}{\hat{I}(\omega)}$$

$$\hat{Z}_0(\omega) = \frac{1}{i\omega C_0}$$

$$C_0 = \frac{\mathcal{E}_0 A}{D}$$

Void parallel plate capacitor

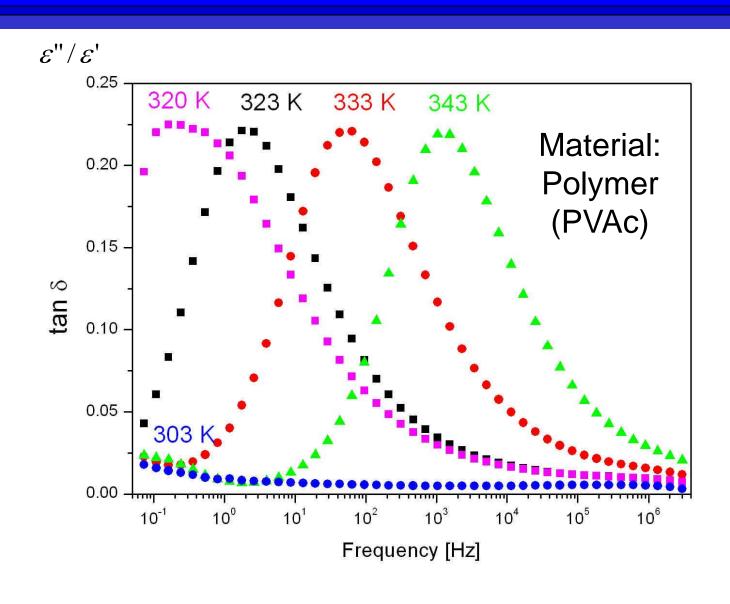
$$\hat{Z}(\omega) = \frac{1}{i\omega\hat{C}(\omega)}$$

$$\hat{Z}(\omega) = \frac{1}{i\omega\hat{C}(\omega)} \qquad \hat{C}(\omega) = \frac{1}{i\omega\hat{Z}(\omega)} = \hat{\varepsilon}_r(\omega)C_0$$

Filled by dielectric

$$\hat{\varepsilon}_{r}(\omega) = \frac{\hat{C}(\omega)}{C_{0}} = \frac{\hat{Z}_{0}(\omega)}{\hat{Z}(\omega)} = \varepsilon'(\omega) - i\varepsilon''(\omega)$$

DIELECTRIC RELAXATION SPECTRUM

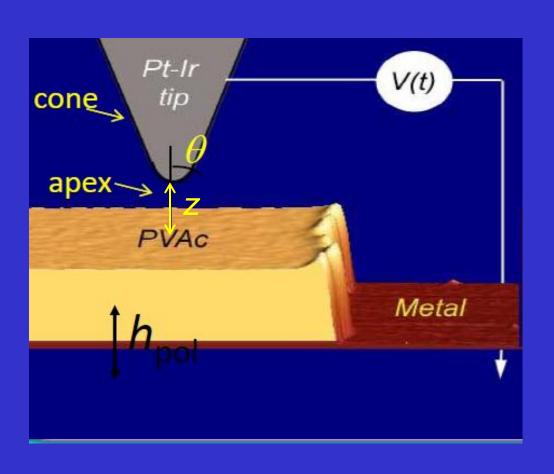


MOTIVATION FOR LOCAL MEASUREMENTS

 BDS provides the average behavior of a macroscopic sample volume.

- Behavior of nanometer-size volume:
 - Single macromolecules
 - Heterogeneity
 - Interface

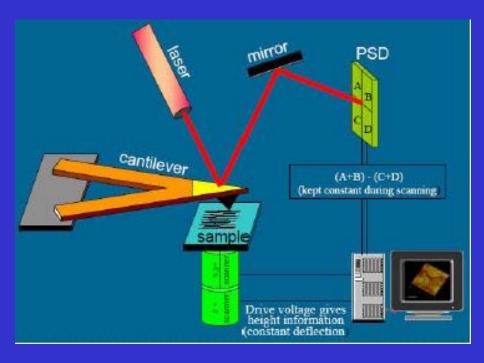
DIELECTRIC PROPERTIES ON A LOCAL SCALE

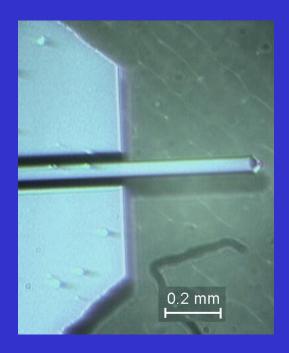


- A conductive tip acts as a nanometer-size electrode.
- Applying electric potential to the tip, a localized electric field is generated.
- A current is produced, like in BDS.
- Current measurement noise prevents sensitivity to capacitance < 1 aF.

ATOMIC FORCE MICROSCOPE (AFM)

Also a *force* is produced, that depends on polarization *charge*, that can be measured accurately if the tip is the one of an ATOMIC FORCE MICROSCOPE.

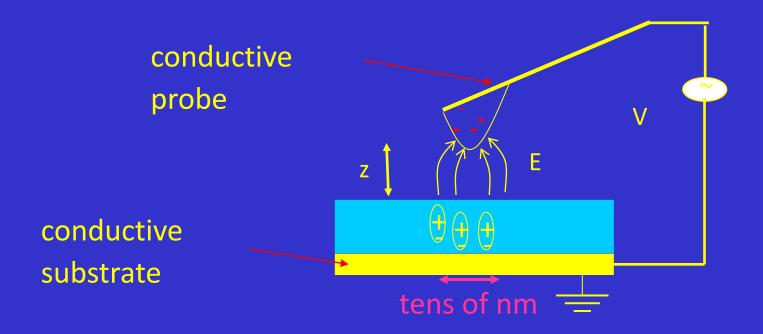




Microscope setup

Cantilever force sensor

ELECTROSTATIC FORCE MICROSCOPE



Y. Martin et al, Appl. Phys. Lett. 52, 1103 (1988).

SOURCES OF ELECTRIC FORCE

• Coulomb force:
$$F_C \approx \frac{q_{\scriptscriptstyle S} q_{\scriptscriptstyle T}(q_{\scriptscriptstyle S}, \Delta V)}{4\pi \varepsilon_0 z^2}$$

(Static charges)

• Capacitive force:
$$F \approx \frac{1}{2} \frac{dC}{dZ} \Delta V^2$$

(Induced charges)

$$\Delta V = \Phi_{surf} + V_a = (\Phi_{surf} + V_{dc}) + V_{ac} \cos(\omega_m t)$$

$$(v_{dc})$$

 (v_{dc}) • $\omega_{\rm m}$ modulation frequency

• Φ_{surf} surface potential difference, V_{a} external applied potential

ECTRIC PROPERTIES BY FORCE MEAS.

$$U_{el}(t) = \frac{1}{2}C(z,\varepsilon)V^{2}(t)$$

$$F_{el,z}(t) = \frac{dU_{el}(t)}{dz}$$

$$V_a(t) = V_{dc} + V_0 \cos(\omega t) \implies$$

$$V_a(t) = V_{dc} + V_0 \cos(\omega t) \implies F_{dc} = \frac{1}{2} \frac{\partial C(z, \varepsilon_s)}{\partial z} v_{dc}^2 + \frac{1}{4} \frac{\partial C(z, \varepsilon(\omega))}{\partial z} V_0^2$$

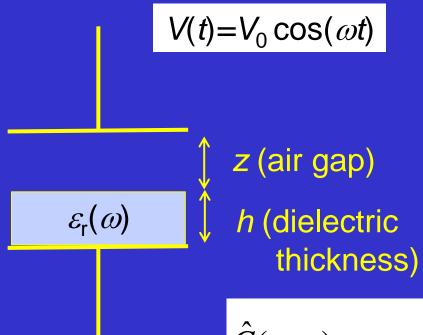
$$F_{\omega}(t) = \frac{\partial C(z, \varepsilon(\omega))}{\partial z} v_{dc} V_0 \cos(\omega t)$$

$$F_{2\omega}(t) = \frac{1}{4} \frac{\partial C(z, \varepsilon(\omega))}{\partial z} V_0^2 \cos(2\omega t)$$

"Local dielectric spectroscopy" (LDS)

P.S. Crider et al., Appl. Phys. Lett. 91, 013102 (2007).

CAPACITANCE MEAS. BY FORCE MICROSCOPY



Series capacitor

$$\hat{Z}(z,\omega) = \frac{1}{i\omega C_0(z)} + \frac{1}{i\omega \hat{C}_1(\omega)}$$

$$C_0(z) = \frac{\varepsilon_0 A}{z} \qquad \hat{C}_1(\omega) = \frac{\varepsilon_0 \hat{\varepsilon}_r(\omega) A}{h}$$

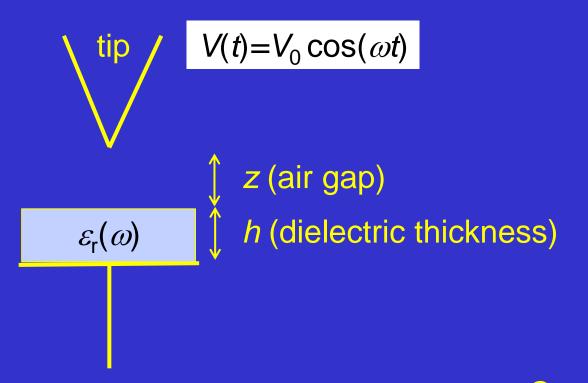
$$\hat{C}_1(\omega) = \frac{\mathcal{E}_0 \hat{\mathcal{E}}_r(\omega) A}{h}$$

$$\hat{C}(z,\omega) = \frac{1}{i\omega\hat{Z}(z,\omega)}$$

 $\hat{C}(z,\omega) = \frac{1}{i\omega\hat{Z}(z,\omega)}$ Capacitance is no longer a linear function of ε_r !

Simple modeling for this geometry is needed to carry out ε_r

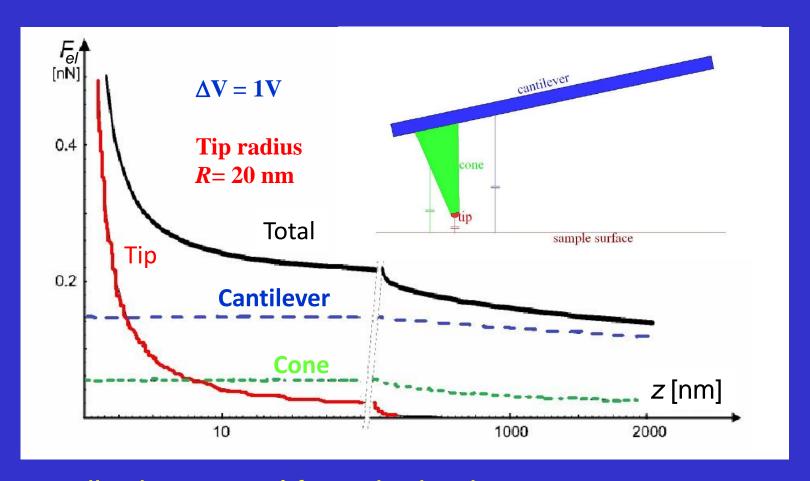
CAPACITANCE MEAS. BY FORCE MICROSCOPY



Series capacitor + tip (not plane) \implies Capacitance is no longer a linear function of ε_{r} !

Modeling for this geometry is needed to carry out ε_{r}

TIP/SAMPLE MODELING

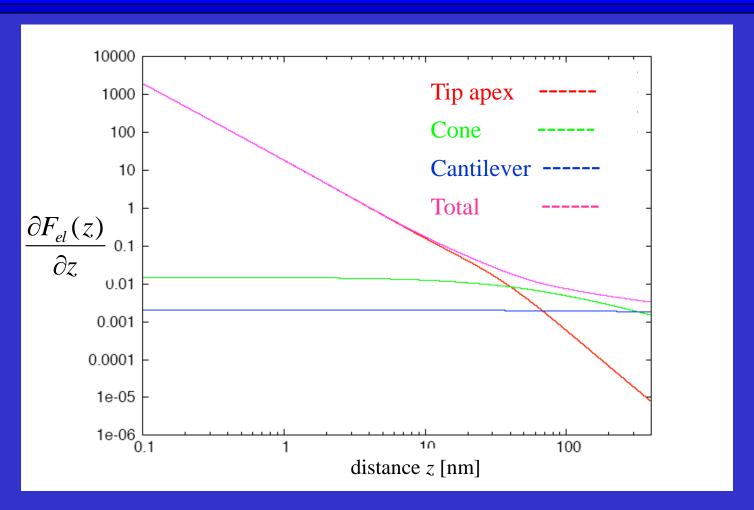


Apex contribution to total force is dominant J. Colchero, A. Gil, A.M. Barò, at small distance only (few nm)

Phys. Rev. B 64, 245403 (2001)

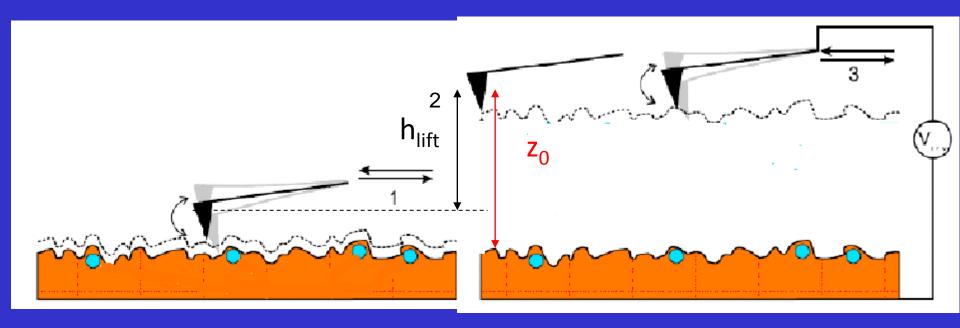
BDS2016 Conference CNR Campus, Pisa, 11.09.2016

SPATIAL RESOLUTION: FORCE vs. GRADIENT



- Force gradient allows to increase resolution.
- AFM is capable to measure z-gradient.

AFM OPERATION: TAPPING and LIFT MODE



Topography is detected (1) by a dynamic AFM mode named TAPPING MODE (cantilever oscillates at its resonant frequency)

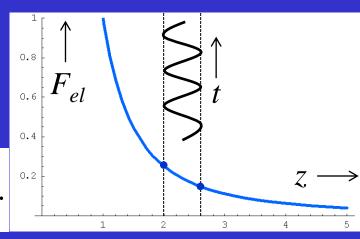
 V_a is applied only during Lift scan (3) (to avoid charge transfer to sample)

FORCE and GRADIENT DETECTION

• Cantilever: forced harmonic oscillator (F_d) in a force field (F_{el})

$$m\ddot{z} + \gamma \dot{z} + kz = F_d \cos(\omega_d t) + F_{el}(V, z, \varepsilon)$$

$$F_{el}(V, z, \varepsilon) \cong F_{el}(V, z_0, \varepsilon) + \frac{\partial F_{el}(V, z, \varepsilon)}{\partial z} (z - z_0) + \dots$$



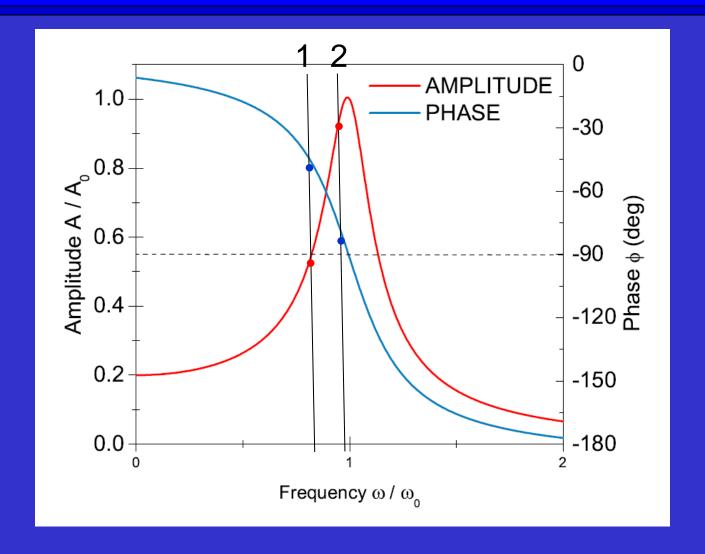
$$m\ddot{z} + \gamma \dot{z} + \left(m\omega_0^2 - \frac{\partial F_{el}(V, z, \varepsilon)}{\partial z}\right)z = F_d \cos(\omega_d t) + \left(F_{el}(V, z_0, \varepsilon) - \frac{\partial F_{el}(V, z, \varepsilon)}{\partial z}z_0\right)$$

Resonant frequency shift

$$\Delta\omega_{res} \approx -rac{\omega_{res}}{2k} rac{dF_{el}}{dz}$$
 • ξ sensitive mainly to F_{el}

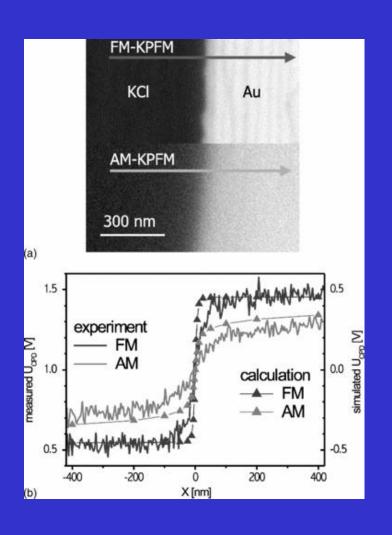
Static deflection *E*

THE FREQUENCY SHIFT



• FM: "Chase" resonance frequency by a "self-oscillator."

EXAMPLE OF SPATIAL RESOLUTION IMPROVEMENT



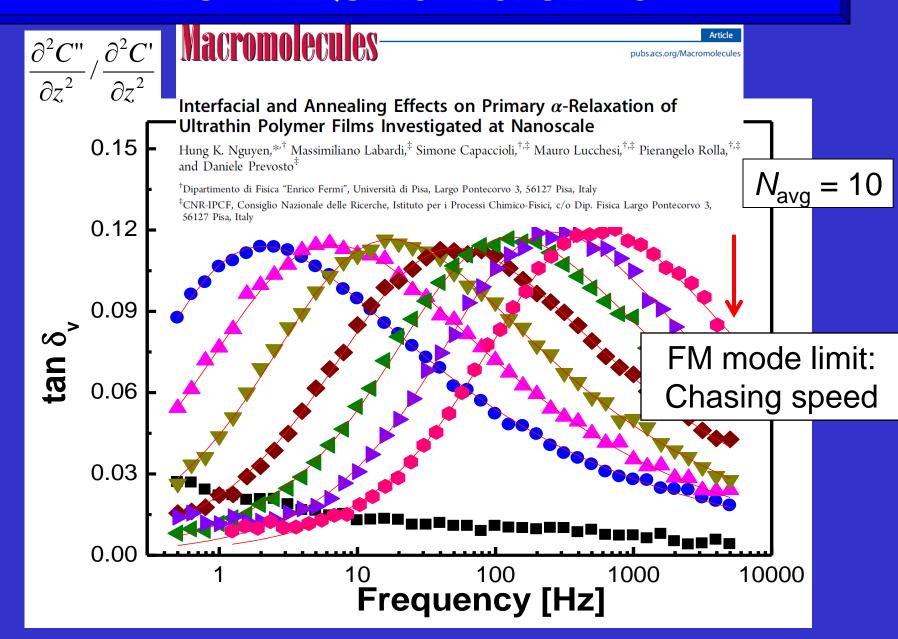
AM (Amplitude Modulation): Force mode (ξ)

FM (Frequency Modulation): "Chasing" mode (force gradient)

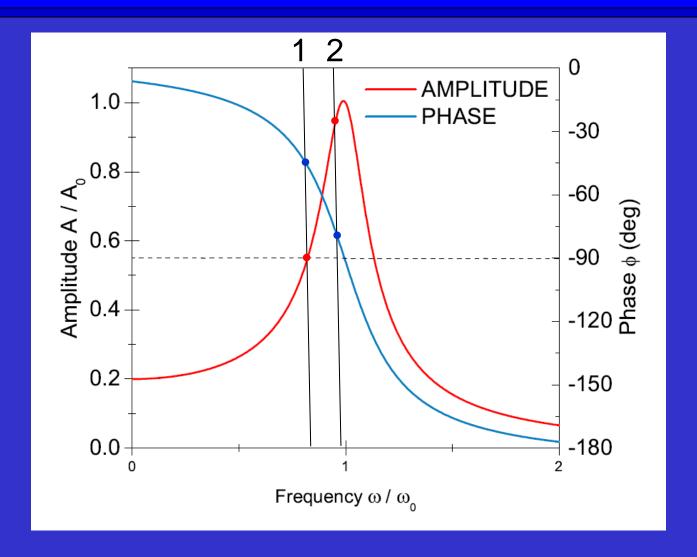
Improvement of spatial resolution with FM mode.

U. Zerweck, Ch. Loppacher, T. Otto, S. Grafstrom, L.M. Eng, *Phys. Rev. B* **71**, 125424 (2005)

LDS - FREQUENCY MODULATION

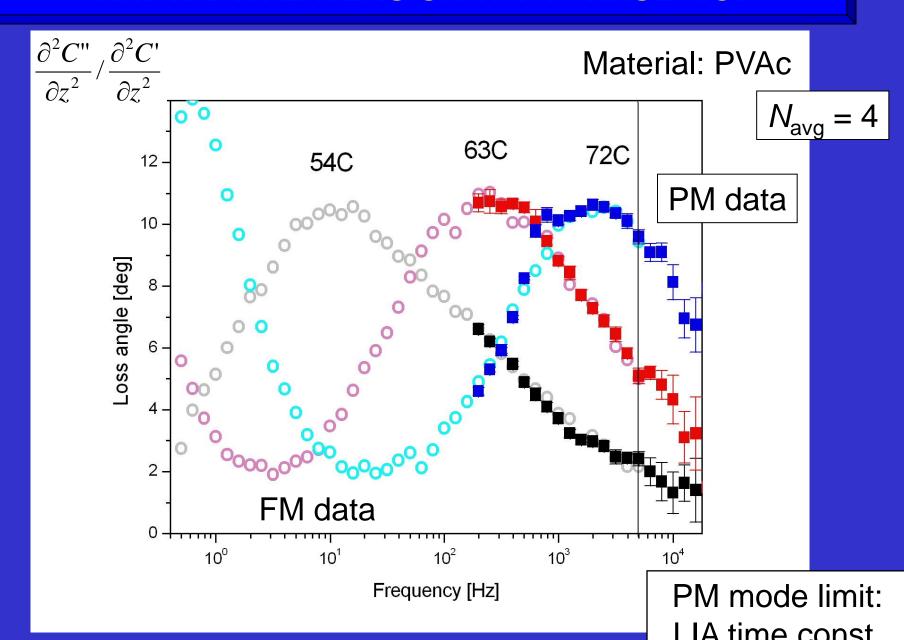


PHASE MODULATION (PM)



Constant frequency: phase is proportional to frequency shift

BANDWIDTH EXTENSION WITH PHASE MOD.

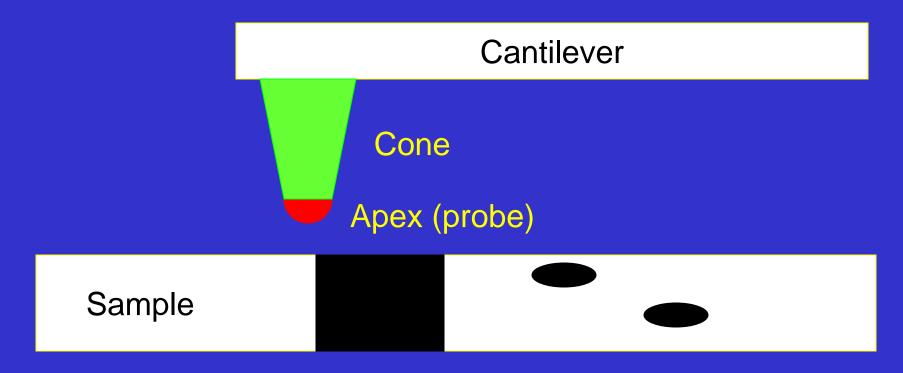


LDS BANDWIDTH EXTENSION

• Frequency bandwidth of LDS can be extended up to MHz range and more.

SEE TALK O-71 on Thursday 15th by M. Labardi et al.

APPLICATION OF LDS TO INTERFACE STUDY

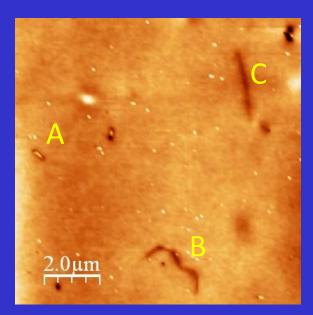


Interface region is probed:

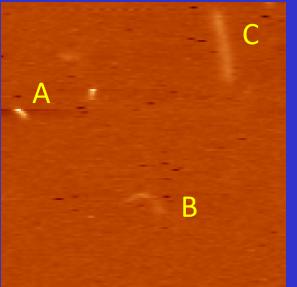
- "in section," (phase separations emerging to free surface), or
- "in depth" (nanostructures near to free surface).

Mo₆S₂I₈ NANOWIRES IN PVP FILM

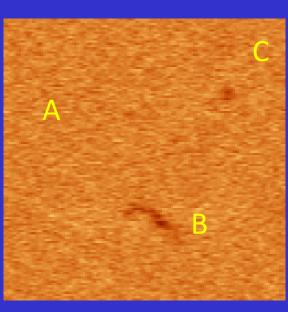
• Polymer: poly (vinyl pyrrolidone), $T_{\rm g} \approx 145\,$ C.



Topography



Electric, amplitude

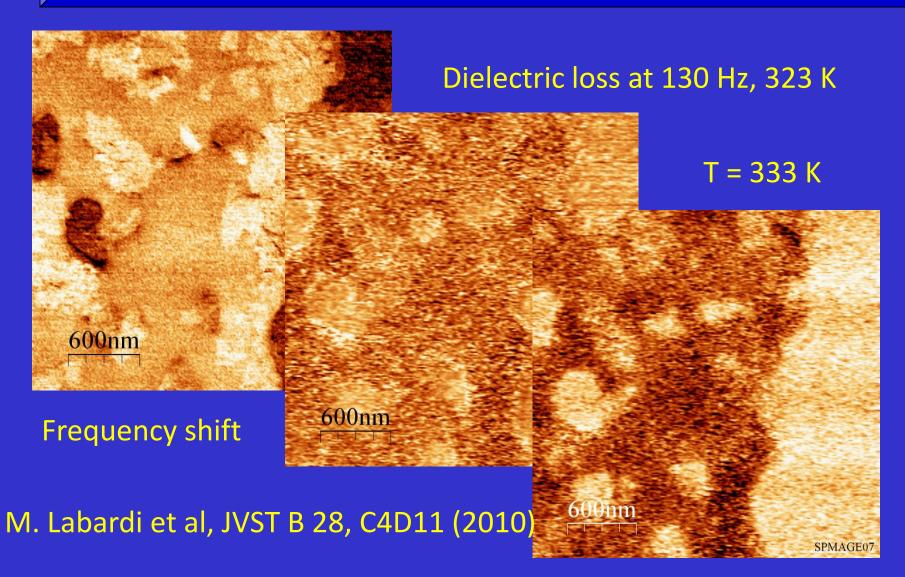


Electric, phase

•
$$T = 171.6$$
 C

M. Labardi et al, J. Non-Cryst. Solids 379, 224 (2013)

MMT CLAY IN PVAc FILM



CONCLUSIONS

- Scanning Force Microscopy gives access to electrical properties on a nanometer scale.
- Local Dielectric Spectroscopy can be operated on frequency and temperature regimes comparable to the ones of BDS, allowing comparison of average properties with local ones, even of single macromolecules.
- Interfaces in nanocomposite materials can be studied by this technique, when they are placed near to the free surface of the sample.