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Water in heterogeneous/biological systems 

Interfacial water—from the ordered structures to the 

single hydrated shell
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Dielectric spectroscopy is sensitive to relaxation  processes 
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Dielectric spectroscopy is sensitive to relaxation processes

in an extremely wide range of characteristic times ( 10 5 - 10 -12 s)

Broadband Dielectric Spectroscopy

Porous materials
and colloids

Clusters Single droplets 
and pores

Glass forming 
liquids

Macromolecules
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Dielectric Response in Biological Systems
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Broadband Dielectric Spectroscopy

Cells

Time Domain Dielectric Spectroscopy
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Water as a marker in the dielectric spectroscopy measurements 

1.8-3 D 

(large dipole moment) 
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Confined conditions

Water is the “contrast” in dielectric measurements!!!
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Water as a marker in the dielectric spectroscopy measurements 
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1) Silica glasses

a. 62.6% SiO2, 30.4% B2O3,7%Na2O

b. 70% SiO2, 23% B2O3, 7% Na2O, 

2) The study of confined water dynamics in clay 

minerals with different doped ions (K, Co, Ni)

a. Montmorillonite

b. Kaolinite

Clays and Clay Minerals (2014), Vol. 62, pp. 62–73

Water in non organic systems:

Microporous and Mesoporous Materials 

58 (2003) 237–254

PRL (2010) Vol. 105, pp. 037601-4 
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L-defects D-defects OH- OH3+

Orientation defects
Ionic defects

Dielectric relaxation in ice and water
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A - 50 kJ/mol

B - 42 kJ/mol

C - 67 kJ/mol

D - 19 kJ/mol

Ice - 60 kJ/mol



15

Porous glasses
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Aluminosilicates: Montmorillonite Ni
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From non organic to organic systems

Using the water as a marker in porous system we can find:

1) The dynamics of water in the regime of the tight confinement  

2) The influence of the various ions on the water dynamic

3) Structural properties of the sample: percolation cluster, fractal dimension and 

porosity

In organic systems additional effects appear:

Specific structure of the 

protein surface  

Concentration of the 

hydrophilic centers in 

one place

Anisotropic properties. 

Ordered structures

Inert interfacial water as apposed to 

the actively solvating molecule
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Protein 
functionality

Protein 
structure

Protein 
hydration 

shell
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Water in organic systems. Hydration shell dynamics in proteins:

1) Hydration shell dynamics of a fibril protein

(Collagen type 1). 

2) Hydration shell dynamics of a globular protein

(Lysozyme). 

3) Hydration shell dynamics of a ring like protein 

(Phycocyanin).
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Introduction to collagen: General structure

Collagen is a protein consisted of (X-Y-Gly)n repeating sequences

Gly is the Glycine X or Y is the Proline or 4-HydroxyProline

HO

Steric effect stabilizes the 

extended nature of the 

individual chains

Hydrogen bonds (Gly:  NH∙∙∙O=C:  X)

leads to triple helixes organization 
Stable triple 

helixes structure
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Introduction to collagen: Water bridges

Water molecules embed into triple helixes 

creating water bridges, that stabilizes collagen 

structure [J. Bella et al Science, 1994]

Water bridges appear as a 

surface bridges surround the triple helixes. 
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The problem: What is the differences 

between hydration shell of globular 

and fibrillar proteins 

Introduction to collagen: Water bridges

The hydration shells connect between each 

other creating stabilized collagen filaments 

[K. Kawahara et al, Biochemistry, 2005]
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Dielectric measurements of the hydrated collagen powders

S. A. Lusceac, et al Proteins and 

Proteomics, 2010

3D plot of dielectric losses of the hydrated 

collagen powders

h=0.16   =0.26   =0.33

Low temperature process
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Main processIce process

S. A. Lusceac, et al J. Non-Cryst. 

Solids (2011)

Dielectric measurements of the hydrated collagen powders

Ice process appears at high hydration level h>0.4 

1. Main process doesn’t depend on the shape of the protein and is observed in

the various proteins.

2. It is attributed to the large-angle jumps of the water molecule

3. The present models are ignored the excess wing at the high frequency

S. A. Lusceac, et al Proteins and 

Proteomics, 2010
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New approach in the data description: Excess wing explanation 

The proposed large-angle jumps can be corresponded with the migration of the H-bond

network defect [I. Popov, A. Puzenko, A. Khamzin and Y. Feldman PCCP, 2015]
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Relaxation in ice

log τ

1000/T

Orientation

defect

Ionic

defect

I. Popov, A. Puzenko, A. Khamzin

and Y. Feldman PCCP, 2015

???

Orientation

Ionic



Additional delay due to 

correlation with L-D defects
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Relaxation in ice

log τ

1000/T

Independent defect migration

H3O
+ defect

L- defect Blockage of the ionic defect

H3O
+ defect

L- defect
L-D defects

ionic defects

The low-temperature dynamic crossover in dielectric 

relaxation behavior of ice Ih

Popov I., Lunev I., Khamzin A., Greenbaum A, Feldman Yu.

(2017, Paper in preparation)
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Relaxation in ice

K.Goto et al Japanese J. 

of Applied Phys. (1986) 

pp.351-357

At low temperature the crack

appearance leads to the suppression of

the ionic defect and transition back to

the mechanism of the orientation

defect.
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Collagen data treatment

H3O
+

H3O
+

Relaxation by ionic defect cannot be faster than relaxation by orientation defect

Hydration water ~ Distorted ice



Dehydrothermal Treatment:

34

After Heating and Keeping the

collagen at 120 0C for 30 min, proton

hopping mechanism slows down

Chains tilting prevents the

formation of the long range

water structure.

Relaxation occurs in local

compartments, where

contribution of the L-D and

ionic defect are comparable



Lysozyme: Surface charge plot
[Christopher D. Cooper at el. 2013]

Charged active center

Lysozyme

35

~20Å



BDS Measurements: Lysozyme h=0.28 and h=0.16
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Τ𝑑Δε 𝑑𝑇>0 tendency to
solid-like dipole orientation

Τ𝑑Δε 𝑑𝑇<0 tendency points to a 
liquid-like behavior. 

Tm of the extremum of 𝛥𝜀(T), the reorientation 
transition temperature. 

T<155K 155K<T<187K T>187K

Short-range antiparallel 
orientation of the water dipoles, 
typical for the amorphous system

Tendency to solid like 
behavior

Tendency to liquid 
like behavior
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BDS Measurements: Lysozyme h=0.28 and h=0.16
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Lysozyme: Surface charge plot
[Christopher D. Cooper at el. 2013]

Charged active center

Explanation of the Results

41

~20Å



∆𝑻𝒇(𝑹ሻ = 𝑪𝑮𝑻/(𝑹 − 𝒓ሻ

∆𝑇𝑓 = 𝑇𝑓 𝑏𝑢𝑙𝑘 − 𝑇𝑓 𝑝𝑜𝑟𝑒 - The depression of the confined water melting temperature. 

𝐶𝐺𝑇-The Gibbs-Thompson Coefficient. 
R - The radius of the pore. 
r - The thickness of a liquid-like layer at the relevant melting temperature.
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Gibbs-Thompson Fit for Silica Nano pores
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Relaxation Times of Hydrated Lysozyme and Confined Water in Silica Nanopores

20Å

Silica nanopore with pore diameter 
equaled to 20A

Lysozyme with diameter cavity inside 
equaled to 20A

Crossover  Tc

[Eliodoro Chiavazzoet al 2014] [Christopher D. Cooper at el. 2013]



Glass-state water 
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Conclusions
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2) Water can be considered as a marker or a contrast

in Dielectric Spectroscopy. The structural and

dynamical properties of the matriex can be studied via

its hydrating.

3) Defect migration model can be used as an universal

approach in description of the dynamic of the

hydration process.

1) The morphology, dynamics and the dielectric properties of the

matrixes will have an influence on the nature of the relaxation of

hydrated water.
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