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The necessary coordination of the motions of different parts of
a polymer molecule is made the hasis of a theory of the linear
viscoelastic properties of dilute solutions of coiling polymers.
This is accomplished by use of the concept of the submolecule, a
portion of polymer chain long enough for the separation of its
ends to approximate a Gaussian probability distribution. The
configuration of a submolecule is specified in terms of the vector
which corresponds to its end-to-end separation. The configuration
of a molecule which contains N submolecules is described by
the corresponding set of N vectors.

The action of a velocity gradient disturbs the distribution of
configurations of the polymer molecules away from its equilibrium
form, storing free energy in the system. The coordinated thermal
motions of the segments cause the configurations to drift toward
their equilibrium distribution. The coordination is tuken into
account by the mathematical requirement that motions of the
atom which joins two submolecules change the configurations of
hoth submolecules. By means of an orthogonal transformation of

coordinates, the coordination of all the motions of the parts of
2 molecule is resolved into a series of modes. Each mode has 2
characteristic relaxation time. The theory produces equations by
means of which the relaxation times, the components of the
complex viscosity, and the components of the complex rigidity
can be calculated from the steady flow viscosities of the solution
and the solvent, the molecular weight and concentration o¢ the
polymer, and the absolute temperature. :

Limitations of the theory may arise from the exclusion from
consideration of (1) very rapid relaxation processes involving
segments shorter than the submolecule and (2) the obstruction
of the motion of a segment by other segments with which it -
happens to be in contact. Another possible cause of disagreement
between the theory and experimental data is the polydispersity :
of any actual polymer; this factor is important because the -
calculated relaxation times increase rapidly with increasing mole- -
cular weight.
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The necessary coordination of the motions of different parts of
a polymer molecule is made the hasis of a theory of the linear
viscoelastic properties of dilute solutions of coiling polymers.
This is accomplished by use of the concept of the submolecule, a
portion of polymer chain long enough for the separation of its
ends to approximate a Gaussian probability distribution. The
configuration of a submolecule is specified in terms of the vector
which corresponds to its end-to-end separation. The configuration
of a molecule which contains N submolecules is described by
the corresponding set of N vectors,

The action of a velocity gradient disturbs the distribution of
configurations of the polymer molecules away from its equilibrium
form, storing free energy in the system. The coordinated thermal
motions of the segments cause the configurations to drift toward
their equilibrium distribution. The coordination is tuken into
account by the mathematical requirement that motions of the
atom which joins two submolecules change the configurations of
hoth submolecules. By means of an orthogonal transformation of

coordinates, the coordination of all the motions of the parts of
2 molecule is resolved into a series of modes. Each mode has 2
characteristic relaxation time. The theory produces equations by
means of which the relaxation times, the components of ths
complex viscosity, and the components of the complex rigidity
can be calculated from the steady flow viscosities of the solution
and the solvent, the molecular weight and concentration o the
polymer, and the absolute temperature,

Limitations of the theory may arise from the exclusion from -
consideration of (1) very rapid relaxation processes involving .
segments shorter than the submolecule and (2) the obstruction
of the motion of a segment by other segments with which it -
happens to be in contact. Another possible cause of disagreerent -
between the theory and experimental data is the polydispersity -
of any actual polymer; this factor is important because the °
calculated relaxation times increase rapidly with increasing mole. -
cular weight.
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The necessary coordination of the motions of different parts of
a polymer molecule is made the hasis of a theory of the linear
viscoelastic properties of dilute solutions of coiling polymers.
This is accomplished by use of the concept of the submolecule, a
portion of polymer chain long enough for the separation of its
ends to approximate a Gaussian probability distribution. The
configuration of a submolecule is specified in terms of the vector
which corresponds to its end-to-end separation. The configuration
of a molecule which contains N submolecules is described by
the corresponding set of N vectors.

The action of a velocity gradient disturbs the distribution of
configurations of the polymer molecules away from its equilibrium
form, storing free energy in the system. The coordinated thermal
motions of the segments cause the configurations to drift toward
their equilibrium distribution. The coordination is tuken into
account by the mathematical requirement that motions of the
atom which joins two submolecules change the configurations of
hoth submolecules. By means of an orthogonal transformation of

coordinates, the coordination of all the motions of the parts of
2 molecule is resolved into a series of modes. Each mode has 2
characteristic relaxation time. The theory produces equations by
means of which the relaxation times, the components of ths
complex viscosity, and the components of the complex rigidity
can be calculated from the steady flow viscosities of the solution
and the solvent, the molecular weight and concentration o¢ the
polymer, and the absolute temperature. :

Limitations of the theory may arise from the exclusion from
consideration of (1) very rapid relaxation processes involving
segments shorter than the submolecule and (2) the obstruction
of the motion of 2 segment by other segments with which it
happens to be in contact. Another possible cause of disagreernent
between the theory and experimental data is the polydispersity :
of any actual polymer; this factor is important because the -
calculated relaxation times increase rapidly with increasing mole- -
cular weight.
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The necessary coordination of the motions of different parts of
a polymer molecule is made the hasis of a theory of the linear
viscoelastic properties of dilute solutions of coiling polymers.
This is accomplished by use of the concept of the submolecule, a
portion of polymer chain long enough for the separation of its
ends to approximate a Gaussian probability distribution. The
configuration of a submolecule is specified in terms of the vector
which corresponds to its end-to-end separation. The configuration
of a molecule which contains N submolecules is described by
the corresponding set of N vectors.

The action of a velocity gradient disturbs the distribution of
configurations of the polymer molecules away from its equilibrium
form, storing free energy in the system. The coordinated thermal
motions of the segments cause the configurations to drift toward
their equilibrium distribution. The coordination is tuken into
account by the mathematical requirement that motions of the
atom which joins two submolecules change the configurations of
hoth submolecules. By means of an orthogonal transformation of

coordinates, the coordination of all the motions of the parts of
2 molecule is resolved into a series of modes. Each mode has 2
characteristic relaxation time. The theory produces equations by
means of which the relaxation times, the components of the
complex viscosity, and the components of the complex rigidity
can be calculated from the steady flow viscosities of the solution
and the solvent, the molecular weight and concentration o¢ the
polymer, and the absolute temperature. :

Limitations of the theory may arise from the exclusion from
consideration of (1) very rapid relaxation processes involving
segments shorter than the submolecule and (2) the obstruction
of the motion of a segment by other segments with which it -
happens to be in contact. Another possible cause of disagreement
between the theory and experimental data is the polydispersity :
of any actual polymer; this factor is important because the -
calculated relaxation times increase rapidly with increasing mole- -
cular weight.
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FIG. 2 (color online). From left to right: Times for chain
relaxation of PI400 (M,, = 400 kDa), PI320 (M,, = 320.2 kDa),
PI82 (M,, = 82 kDa), PI53 (M,, = 53 kDa), PI19
(M,, = 19 kDa), PI10 (M,, = 10.5 kDa), PIl (M,, = 1.2 kDa),
and a relaxation of PI1 and PI82. Data for PI1 were shifted
—0.0004 in the x axis. Thick lines: times by TSDC curve analysis.
Crosses x (¢ for PI1): times by BDS. Thin lines: fits of BDS
times to a WLF (chain) or Vogel-Fulcher-Tammann equation [21]
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Figure 2. Panel (a) t(T) for the p = 1 chain mode and a-relaxation of PI10 and (b) the ratio Tpey T4 () isothermal measurements; (c) variable rate

global TSDC; (=) PP-TSDC. The lines in (a) are WLF and VFT law fits of the isothermal measurements and their ratio in (b). Dashed and dotted
dashed lines in (b) show the power law description valid in limited ranges.



Chain dynamics: Determination of monomeric friction

Molecular Dynamics Simulations

Rouse Model fails at high-Q (short distances)

Local potentials and chain stiffness enter the gamell
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Chain dynamics: Determination of monomeric friction

Molecular Dynamics Simulations

Rouse Model fails at high-Q (short distances)

Friction depends on the wavelength of chain modes
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